SAF-RC-210 100-IU-2 & 100-IU-6 Miscellaneous Restoration Sites Near 100F - Soil Full Protocol FINAL VALIDATION PACKAGE

COMPLETE COPY OF FINAL VALIDATION PACKAGE TO:

Kathy Wendt

COMMENTS:

SDG J01506

SAF-RC-210

Sample Location: 600-316

Date:

11 July 2012

To:

Washington Closure Hanford Inc. (technical representative)

From:

ELR Consulting

Project:

100-IU-2 & 100-IU-6 Miscellaneous Restoration Sites Near 100F - Soil Full

Protocol – Waste Site 600-316

Subject:

Inorganics - Data Package No. J01506-TAL

INTRODUCTION

This memo presents the results of data validation on Data Package No. J01506 prepared by TestAmerica Laboratories (TAL). A list of samples validated along with the analyses reported and the method of analysis is provided in the following table.

Sample ID	Sample Date	Media	Validation	Analyte
J1P292	5/15/12	Soil	С	See note 1
J1P293	5/15/12	Soil	С	See note 1
J1P294	5/15/12	Soil	C	See note 1

^{1 -} ICP metals (6010B) and mercury by 7471A.

Data validation was conducted in accordance with the Washington Closure Hanford (WCH) validation statement of work and the 100 Area Remedial Action Sampling and Analysis Plan (DOE/RL-96-22, September 2009). Appendices 1 through 6 provide the following information as indicated below:

Appendix 1. Glossary of Data Reporting Qualifiers

Appendix 2. Summary of Data Qualification

Appendix 3. Annotated Laboratory Reports

Appendix 4. Laboratory Narrative and Chain-of-Custody Documentation

Appendix 5. Data Validation Supporting Documentation

Appendix 6. Additional Documentation Requested by Client

DATA QUALITY PARAMETERS

· Holding Times

Analytical holding times for metals are assessed to ascertain whether the holding time requirements were met by the laboratory. The holding time requirements are as follows: Soil samples must be analyzed within 6 months for ICP metals and 28 days for mercury.

All holding times were acceptable.

· Preparation (Method) Blanks

Preparation Blanks

At least one preparation blank, consisting of deionized distilled water processed through each sample preparation and analysis procedure, must be prepared and analyzed with every sample delivery group. In the case of positive blank results, samples with digestate concentrations less than five times the preparation blank value have had their associated values qualified as non-detected and flagged "UJ". Samples with concentrations of greater than five times the highest blank concentration do not require qualification.

In the case of negative blank results, if the absolute value exceeds the contract required detection limit (CRDL), all nondetects are rejected and flagged "UR" and all detects that are less than ten times the absolute value of the associated preparation blank result are qualified as estimates and flagged "J". If the absolute value of the negative preparation blank is greater than the instrument detection limit (IDL) and less than or equal to the CRDL, all nondetects are qualified as estimates and flagged "UJ" and all detects less than ten times the absolute value of the blank are qualified as estimates and flagged "J". If the sample results are greater than ten times the absolute value of the preparation blank, no qualification is necessary.

All preparation blank results were acceptable.

Field (Equipment) Blank

No field blanks were submitted for analysis.

Accuracy

Matrix Spike and Laboratory Control Sample

Matrix spike (MS) and laboratory control sample (LCS) analyses are used to assess the analytical accuracy of the reported data. The matrix spike is used to assess the effect of the matrix on the ability to accurately quantify sample concentrations. Recoveries must fall within the range of 75% to 125%. Samples with a recovery of less than 30% and a sample result below the IDL are rejected and flagged "UR". Samples with a recovery of 30% to 74% and a sample result less than the IDL are qualified "UJ". Samples with a recovery of greater than 125% or less than 74% and a sample result greater than the IDL are qualified as estimates and flagged "J". Finally, for samples with a recovery greater than 125% and a sample result less than the IDL, no qualification is required.

Due to matrix spike recoveries outside QC limits, all antimony (31%), silicon (-1%) and zinc (144%) results were qualified as estimates and flagged "J".

Due to an LCS recovery outside QC limits, all silicon (17%) results were qualified as estimates and flagged "J".

All other accuracy results were acceptable

Precision

Laboratory Duplicate Samples

Analytical precision is expressed by the relative percent differences (RPD) between the recoveries of matrix spike duplicate (MSD) analyses performed on a sample in the analytical batch. Precision may alternatively be assessed using unspiked duplicate analyses performed on a sample in the analytical batch. If both sample and replicate activities (concentrations) are greater than five times the CRDL and the RPD is less than 30%, no qualification is required. If either activity (concentration) is less than five times the CRDL, the RPD control limit is less than or equal to two times the CRDL. If the RPD is outside the applicable control limit, associated results are qualified as estimated detects or estimated non-detects.

Due to RPDs outside QC limits, all lead (183%) and arsenic (182%) results were qualified as estimates and flagged "J".

All other laboratory duplicate results were acceptable.

Field Duplicate

No field duplicates were submitted for analysis.

Analytical Detection Levels

Reported analytical detection levels are compared against the 100 Area RQLs to ensure that laboratory detection levels meet the required criteria. All results met the RQL.

Completeness

Data package No. J01506 was submitted for validation and verified for completeness. Completeness is based on the percentage of data determined to be valid (i.e., not rejected). The completion percentage was 100%.

MAJOR DEFICIENCIES

None found.

MINOR DEFICIENCIES

The following minor deficiencies were noted:

- Due to matrix spike recoveries outside QC limits, all antimony (31%), silicon (-1%) and zinc (144%) results were qualified as estimates and flagged "J".
- Due to an LCS recovery outside QC limits, all silicon (17%) results were qualified as estimates and flagged "J".
- Due to RPDs outside QC limits, all lead (183%) and arsenic (182%) results were qualified as estimates and flagged "J".

Data flagged "J" indicates that the associated concentration is an estimate, but under the WCH statement of work, the data may be usable for decision-making purposes. All other validated results are considered accurate within the standard error associated with the methods.

REFERENCES

Washington Closure Hanford Contract #S00W307A00 (March 2008), *Data Validation Services*, March 2008.

DOE/RL-96-22, Rev. 5, 100 Area Remedial Action Sampling and Analysis Plan, U.S. Department of Energy, September 2009.

Appendix 1

Glossary of Data Reporting Qualifiers

Qualifiers which may be applied by data validators in compliance with WCH validation SOW are as follows:

- Indicates the compound or analyte was analyzed for and not detected in the sample. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory.
- UJ Indicates the compound or analyte was analyzed for and not detected in the sample. Due to a minor QC deficiency identified during the data validation, the associated quantitation limit is an estimate.
- Indicates the compound or analyte was analyzed for and detected. Due to a minor QC deficiency identified during the data validation, the associated concentration is an estimate, but the data are usable for decision-making purposes.
- BJ Applied to inorganic analyses only. Indicates the analyte concentration was greater than the IDL but less than the CRDL and is considered an estimated value.
- Indicates the compound or analyte was analyzed for, detected, and due to an identified major QC deficiency, the data are unusable.
- UR Indicates the compound or analyte was analyzed for and not detected in the sample. Additionally, the data is unusable due to an identified major QC deficiency.
- NJ Indicates presumptive evidence of a compound at an estimated value. The data may not be valid for some specific applications (i.e., usable for decision-making purposes).
- N Indicates presumptive evidence of a compound. The data may not be valid for some specific applications (i.e., usable for decision-making purposes).

Appendix 2
Summary of Data Qualification

INORGANICS DATA QUALIFICATION SUMMARY*

SDG: J01506	REVIEWER: ELR	Project: 600-316	PAGE_1_OF_1
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
Antimony Silicon Zinc	J	All	MS recovery
Silicon	J	All	LCS recovery
Arsenic Lead	J	All	RPD

^{* -} The Qualified Data Summary Table includes laboratory applied "U" qualifiers not specifically identified here. The laboratory applied "U" qualifiers are included to minimize misinterpretation of results contained in the table.

Appendix 3

Annotated Laboratory Reports

Analytical Data

Job Number: 280-28967-1

Sdg Number: J01508

Client Sample ID:

J1P292

Client: Washington Closure Hanford

Lab Sample ID:

280-28967-1

Client Matrix:

Solid

% Moisture:

1.2

Date Sampled: 05/15/2012 1120

Date Received: 05/17/2012 0900

6010B Metals (ICP)

Analysis Method:

6010B 3050B Analysis Batch:

280-120581

Instrument ID:

MT_025

Prep Method:

Prep Date:

Prep Batch:

280-120257

Lab File ID:

25A3051812.asc

Dilution: Analysis Date: 1.0

05/18/2012 2131 05/18/2012 1400 W7/10/12

Initial Weight/Volume: 1.02 g 100 mL Final Weight/Volume:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Numinum		11100	X	1.5	5.0
Antimony	•	0.38	UT	0.38	0.60
Arsenic		6.4	MF	0.65	0.99
Barium		127	x _	0.075	0.50
Beryllium		0.43		0.033	0.20
Boron		3.1		0.97	2.0
Cadmium		0.32		0.041	0.20
Calcium		4320	Х	14.0	49.6
Chromium		12.8	X	0.058	0.20
Cobalt		8.4	X	0.099	0.99
Copper		19.7	X	0.22	0.99
ron		26900	Χ	3.8	5.0
Lead		20.7	хм 🕽	0.27	0.50
Magnesium		5040	x	3.7	19.8
Manganese		535	X	0.099	0.99
Molybdenum		0.26	U	0.26	2.0
Nickel		12.8	×	0.12	4.0
Potassium		2390	X	40.7	298
Selenium		0.85	U	0.85	0.99
Silicon		538	たNX	5.6	9.9
Silver		0.16	υ	0.16	0.20
Sodium		280		58.5	119
Vanadium		57.5	X .	0.093	2.0
Zinc		102	× T	0.39	0.99

7471A Mercury (CVAA)

Analysis Method: Prep Method:

7471A 7471A 1.0

Analysis Batch: Prep Batch:

280-121070 280-120779 Instrument ID: Lab File ID:

MT_033 120522aa.txt

Dilution:

05/22/2012 1613

Initial Weight/Volume: Final Weight/Volume:

0.53 g 50 mL

Analysis Date: Prep Date:

05/22/2012 1210

Analyte

DryWt Corrected: Y

Result (mg/Kg)

Qualifier

MDL

RL

Mercury

0.066

0.0063

0.019

Analytical Data

Job Number: 280-28967-1

Sdg Number: J01506

Client Sample ID:

J1P293

Client: Washington Closure Hanford

Lab Sample ID:

280-28967-2FD

Client Matrix:

Solid

% Moisture:

Analysis Batch:

1.0

Date Sampled: 05/15/2012 1120

Date Received: 05/17/2012 0900

6010B Metals (ICP)

Analysis Method: Prep Method:

6010B

3050B

1.0

Dilution: Analysis Date:

Prep Date:

05/18/2012 2141 05/18/2012 1400

280-120257 Prep Batch:

V7/10/12

Instrument ID: 280-120581

Lab File ID:

MT_025

25A3051812.asc

Initial Weight/Volume:

1.01 g

Final Weight/Volume:

100 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum	er de reconsequente de consequente de confedence de consequence de consequence de consequence de consequence de	11500	X	1.6	5.0
Antimony		0.38	U 🄰	0.38	0.60
Arsenic		6.6	Ī	0.66	1.0
Barium		128	X	0.076	0.50
		0.44		0.033	0.20
Beryllium		2.7		0.98	2.0
Boron		0.34		0.041	0.20
Cadmium		4410	X	14.1	50.0
Calcium		13.5	x	0.058	0.20
Chromium		8.3	x	0.10	1.0
Cobalt			x	0.22	1.0
Copper		18.1	x	3.8	5.0
Iron		25200	x̂ ゴ	0.27	0.50
Lead		26.9	× ×	3.7	20.0
Magnesium		5110		0.10	1.0
Manganese		431	X	0.16	2.0
Molybdenum		0.26	U		4.0
Nickel		12.7	X	0.12	300
Potassium		2490	X	41.0	1.0
Selenium		0.86	U	0.86	
Silicon		686	x ユ	5.7	10.0
Silver		0.16	U	0.16	0.20
Sodium		282		59.0	120
Vanadium		54.9	Χ _	0.094	2.0
Zinc		112	× Ј	0.40	1.0

7471A Mercury (CVA)

280-121070

280-120779

Analysis Method:

7471A

Prep Method: Dilution:

7471A

Analysis Date:

1.0

05/22/2012 1621

Prep Date:

Analyte

Mercury

05/22/2012 1210

DryWt Corrected: Y

Result (mg/Kg) 0.076

Analysis Batch:

Prep Batch:

Qualifier

MDL

Initial Weight/Volume:

Final Weight/Volume:

Instrument ID:

Lab File ID:

0.0062

RL 0.019

MT_033

0.54 g

50 mL

120522aa.txt

Job Number: 280-28967-1

Sdg Number: J01506

Client Sample ID:

J1P294

Solid

Client: Washington Closure Hanford

Lab Sample ID:

280-28967-3EB

Client Matrix:

% Moisture:

Date Sampled: 05/15/2012 1130

Date Received: 05/17/2012 0900

6010B Metals (ICP)

Analysis Method:

6010B 3050B Analysis Batch: Prep Batch:

280-120581 280-120257

0.0

Instrument ID: Lab File ID:

MT_025

Prep Method: Dilution:

1.0

Initial Weight/Volume:

25A3051812.asc 1.01 g

Analysis Date:

Final Weight/Volume:

100 mL

05/18/2012 2143 05/18/2012 1400 Prep Date:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aluminum	The second secon	331	X	1.5	5.0
Antimony		0.38	UJ	0.38	0.59
Arsenic		0.65	UJ	0.65	0.99
Barium		3.6	x	0.075	0.50
Beryllium		0.16	В	0.033	0.20
Boron		0.97	U	0.97	2.0
Cadmium		0.041	U	0.041	0.20
Calcium		53.5	X	14.0	49.5
		0.38	X	0.057	0.20
Chromium		0.55	вх	0.099	0.99
Cobalt		0.79	вх	0.21	0.99
Copper		3400	X	3.8	5.0
lron		1.4	x̂ J	0.27	0.50
Lead		42.8	X.	3.7	19.8
Magnesium		45.9	X	0.099	0.99
Manganese		0.26	ΰ	0.26	2.0
Molybdenum		0.41	ВX	0.12	4.0
Nickel		69.8	ВX	40.6	297
Potassium		0.85	U	0.85	0.99
Selenium			××ゴ	5.6	9.9
Silicon		180	ν -	0.16	0.20
Silver		0.16	Ü	58.4	119
Sodium		58.4	ВX	0.093	2.0
Vanadium		1.2		0.39	0.99
Zinc		6.0	× 5	0.39	0.33

7471A Mercury (CVAA)

Analysis Method: Prep Method:

7471A 7471A

Analysis Batch: Prep Batch:

280-121070 280-120779

Instrument ID: Lab File ID:

MT_033 120522aa.txt

Dilution:

1.0

Initial Weight/Volume:

0.58 g

Analysis Date:

05/22/2012 1623

Final Weight/Volume:

50 mL

Prep Date:

05/22/2012 1210

Analyte

Result (mg/Kg)

Qualifier

MDL 0.0057 RL 0.018

Appendix 4

Laboratory Narrative and Chain-of-Custody Documentation

CASE NARRATIVE

Client: Washington Closure Hanford

Project: WASHINGTON CLOSURE HANFORD

Report Number: 280-28967-1

SDG #: J01506 SAF#: RC-210

Date SDG Closed: May 17, 2012

Data Deliverable: 21 Day / Summary

CLIENT ID	LAB ID	ANALYSES REQUESTED	ANALYSES PERFORMED
J1P292	280-28967-1	6010B/7471/1311-6010-7470	6010B/7471A/1311
J1P293	280-28967-2	6010B/7471/1311-6010-7470	6010B/7471A/1311
J1P294	280-28967-3	6010B/7471/1311-6010-7470	6010B/7471A/1311

I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed in this Case Narrative. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the signature on the Report Cover.

With exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. All laboratory quality control samples analyzed in conjunction with the samples in this project were within established control limits, with any exceptions noted. Calculations are performed before rounding to avoid round-off errors in calculated results.

This report includes reporting limits (RLs) less than TestAmerica Denver's practical quantitation limits. These reporting limits are being used specifically at the client's request to meet the needs of this project. Please note that data are not normally reported to these levels without qualification, since they are inherently less reliable and potentially less defensible than required by the current NELAC standards.

The results, RLs and MDLs included in this report have been adjusted for dry weight, as appropriate.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 5/17/2012 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.4° C.

Samples requesting TCLP Metals 1311/6010B/7470A analysis were leached and placed on hold, as instructed on the chain-of-custody. On 6/6/2012, the client instructed the laboratory to cancel the requested TCLP Metals 1311/6010B/7470A analyses.

TOTAL METALS - SW846 6010B/7471A

Serial dilution of a digestate in batch 280-120257 indicates that physical and chemical interferences are present for several elements. Results have been flagged with an "X".

It can be noted that the sample amount was greater than four times the spike amount for Aluminum, Iron and Manganese in the Matrix Spike performed on sample J1P292; therefore, control limits are not applicable.

Silicon was recovered outside the control limits in the Matrix Spike performed on sample J1P292, and the associated sample result has been flagged "N". There is no indication that the analytical system was operating out of control, and method accuracy has been verified by the acceptable LCS analysis data; therefore, corrective action is deemed unnecessary.

The duplicate analysis of sample J1P292 exhibited RPD data outside the control limits for Arsenic and Lead, and the associated sample results have been flagged "M". There is no indication that the analytical system was operating out of control, and method accuracy has been verified by the acceptable LCS analysis data; therefore, corrective action is deemed unnecessary.

No other anomalies were encountered.

Washington Closure Hanford CHAIN OF CUSTOD			CODY/S	AMF	LE ANA	LYSIS	REQUI	EST		RC-210-027	Page 1		
Collector MOORE, BR	ire mamoru	Compa	any Contact Kessner	Telepho				Project Co KESSNER	ordinator	Price Code	JRSK12 SD		Elia rearound Days
Project Designation 100-IU-2 & 100-IU-6 Misce	ellaneous Restoration Site		ing Location -316:2					SAF No. RC-210			- OD	31 D	•
Ice Chest No. BCC-	-07-011	Field I		COA 06031	162000		Method of FedEx						
Shipped To TestAmerica Incorporated,	Richland Denve	Offsite	Property No.	1103	76			Bill of Las Sec OSF	iing/Air Bil C	No.		1	
POSSIBLE SAMPLE HAZ			Preservation	Cool 4C		_			-				
Special Handling and/or	Storage		Type of Container	1	+-							1	
Cool 4C			No. of Container(s) Volume	R 5/5/12					_				
S.	SAMPLE ANAI	LYSIS		250 w.L. See item (1) is Special Instructions.									
Sample No.	Matrix *	Sample Date	Sample Time	*************************************			雅器			素			连续
J1P292	SOIL	5-15-12	1120	X	T								11
J1P293	SOIL	5-15-12		X								-	DUP
J1P294	SOIL	5-15-12		X	\vdash	-	+		-	-	+		EB
					上			TONIC					Matrix *
CHAIN OF POSSESS Relinquished By/Removed From Bray Hanks Are Relinquished By/Removed From	Date/Time S	Received By/Sto PAULI W. S RESIDENT Received By/Sto	red In Linkwall 5/1 Plant England D. Acad Broghan D. S-15-12 red In Color To The Co	oate/Time S/12 143 Sate/Time; W. Sate/Time Date/Time Date/Time	50 0	Cadmium, Calcinickel, Potassia (Mercury) Plea Joa	:-6010TR (ium, Chrom um, Selenium	Close-out List) firm, Cobat, Co firm, Silicon, Silve Each & SN-EV.	pper, bros, Les r, Sodium, V≊	d, Magnessam, I adium, Zinc); N	c, Barium, Beryllik Manganese, Molyl Mercury - 7471 - (()	(CV)	So-Sold SE-Soldmoot SO-Sold SS-Sold p W = Water O-Oil A-Air DS-Drum Soldd DL-Drum Liquit T-Tisses W1-Wijee L-Liquid V-Vogetation X=Other
SECTION		*					Disposed By			5-	16-12	Date/Time	
FINAL SAMPLE Disposal DISPOSITION	Method						o aproson D						

Appendix 5

Data Validation Supporting Documentation

PROJECT: LOG-315 DATA PACKAGE: JOISOG VALIDATOR: ELR LAB: THE DATE: VITE SDG: JOISOG ANALYSES PERFORMED SW-846/ICP SW-846/GFAA SW-846/Hg SW-846 Cyanide SW-846 SAMPLES/MATRIX JP292 JP293 JP294 1. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE Technical verification documentation present? Yes No Initial calibrations performed on all instruments? Yes No Initial calibrations acceptable? Yes No Initial calibrations acceptable? Yes No Initial calibrations performed on all instruments? Yes No Initial calibrations performed on all instruments? Yes No Initial calibrations acceptable? Yes No Initial calibration acceptable? Yes No Initial calibrations acceptable?	VALIDATION LEVEL:	A	В	(°)	D	Е
SM-846/ICP SW-846/GFAA SW-846/Hg SW-846 SW-846/ICP SW-846/GFAA SW-846/Hg SW-846 Cyanide SW-846/ICP SW-846 I P292 IP293 IP294 U I. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE Technical verification documentation present? Comments: 2. INSTRUMENT PERFORMANCE AND CALIBRATIONS (Levels D and E) Initial calibrations performed on all instruments? Yes No Initial calibrations acceptable? Yes No ICV and CCV checks performed on all instruments? Yes No ICV and CCV checks acceptable?	PROJECT:	600.3	14	DATA PACKAG	e: JOIS	09
ANALYSES PERFORMED SW-846/ICP SW-846/IGFAA SW-846/Hg SW-846 Cyanide SAMPLES/MATRIX TP292 TIP253 TIP254 I. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE Technical verification documentation present? Comments: 2. INSTRUMENT PERFORMANCE AND CALIBRATIONS (Levels D and E) Initial calibrations performed on all instruments? Yes No ICP interference checks acceptable? Yes No ICV and CCV checks performed on all instruments? Yes No Standards traceable? Yes No Standards expired? Yes No Calculation check acceptable? Yes No Y	VALIDATOR:	ELR	LAB:	-(DATE: 7	1112
SW-846/ICP SW-846/GFAA SW-846/Hg SW-846 Cyanide SAMPLES/MATRIX TIP292 TIP293 TIP294 I. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE Technical verification documentation present? Comments: 2. INSTRUMENT PERFORMANCE AND CALIBRATIONS (Levels D and E) Initial calibrations performed on all instruments? Yes No ICP interference checks acceptable? Yes No ICV and CCV checks performed on all instruments? Yes No Standards traceable? Yes No Standards expired? Yes No Calculation check acceptable?				SDG:	10150G	
SAMPLES/MATRIX TP292 TIP293 TIP293 TIP294 So (/ 1. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE Technical verification documentation present? Comments: 2. INSTRUMENT PERFORMANCE AND CALIBRATIONS (Levels D and E) Initial calibrations performed on all instruments? Initial calibrations acceptable? Yes No ICP interference checks acceptable? Yes No ICV and CCV checks performed on all instruments? Yes No ICV and CCV checks acceptable? Yes No Standards traceable? Yes No Standards expired? Yes No Calculation check acceptable?			ANALYSES I	PERFORMED	•	
Initial calibrations performed on all instruments? ICV and CCV checks acceptable? INO TO The Acceptable? Yes No To No	SW-846/ICP	SW-846/GFAA	SW-846/Hg			
Initial calibrations performed on all instruments? ICV and CCV checks performed on all instruments? ICV and CCV checks acceptable? Yes No Standards traceable? Yes No Standards expired? Yes No Calculation check acceptable?						
I. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE Technical verification documentation present? Yes No Proceedings of the Comments: 2. INSTRUMENT PERFORMANCE AND CALIBRATIONS (Levels D and E) Initial calibrations performed on all instruments? Yes No Proceedings of the Comments of the C	SAMPLES/MAT	RIX		·		
I. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE Technical verification documentation present? Yes No Proceedings of the Comments: 2. INSTRUMENT PERFORMANCE AND CALIBRATIONS (Levels D and E) Initial calibrations performed on all instruments? Yes No Proceedings of the Comments of the C			1P253	T1P24	4	
1. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE Technical verification documentation present? Yes No Comments: 2. INSTRUMENT PERFORMANCE AND CALIBRATIONS (Levels D and E) Initial calibrations performed on all instruments? Yes No Initial calibrations acceptable? Yes No ICP interference checks acceptable? Yes No ICV and CCV checks performed on all instruments? Yes No ICV and CCV checks acceptable?						
1. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE Technical verification documentation present? Yes No Comments: 2. INSTRUMENT PERFORMANCE AND CALIBRATIONS (Levels D and E) Initial calibrations performed on all instruments? Yes No Initial calibrations acceptable? Yes No ICP interference checks acceptable? Yes No ICV and CCV checks performed on all instruments? Yes No ICV and CCV checks acceptable?						
1. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE Technical verification documentation present? Yes No Comments: 2. INSTRUMENT PERFORMANCE AND CALIBRATIONS (Levels D and E) Initial calibrations performed on all instruments? Yes No Initial calibrations acceptable? Yes No ICP interference checks acceptable? Yes No ICV and CCV checks performed on all instruments? Yes No ICV and CCV checks acceptable?						
1. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE Technical verification documentation present? Yes No Comments: 2. INSTRUMENT PERFORMANCE AND CALIBRATIONS (Levels D and E) Initial calibrations performed on all instruments? Yes No Initial calibrations acceptable? Yes No ICP interference checks acceptable? Yes No ICV and CCV checks performed on all instruments? Yes No ICV and CCV checks acceptable?						501/
Technical verification documentation present? Comments: INSTRUMENT PERFORMANCE AND CALIBRATIONS (Levels D and E) Initial calibrations performed on all instruments? ICP interference checks acceptable? ICV and CCV checks performed on all instruments? Yes No ICV and CCV checks acceptable?	<u> </u>	<u></u>				
Initial calibrations performed on all instruments? Initial calibrations acceptable? ICP interference checks acceptable? ICV and CCV checks performed on all instruments? ICV and CCV checks acceptable? Yes No Standards traceable? Yes No Calculation check acceptable? Yes No Calculation check acceptable? Yes No						Y (s No 1)/A
Initial calibrations performed on all instruments? Initial calibrations acceptable? ICP interference checks acceptable? ICV and CCV checks performed on all instruments? ICV and CCV checks acceptable? Yes No Standards traceable? Yes No Calculation check acceptable? Yes No Calculation check acceptable? Yes No	***************************************					
Initial calibrations acceptable? Yes No ICP interference checks acceptable? Yes No ICV and CCV checks performed on all instruments? Yes No ICV and CCV checks acceptable?				•		Yes No TVA
ICP interference checks acceptable? ICV and CCV checks performed on all instruments? ICV and CCV checks acceptable? Standards traceable? Standards expired? Yes No		_				- 1
ICV and CCV checks performed on all instruments? ICV and CCV checks acceptable? Standards traceable? Yes No						1
ICV and CCV checks acceptable? Standards traceable? Standards expired? Calculation check acceptable? Yes No Results N		_				1
Standards traceable? Yes No						1
Standards expired? Yes No Calculation check acceptable? Yes No No						1
Calculation check acceptable? Yes No				•		1
Comments:	•					1
	Comments:			,		
		•				

3. BLANKS (Levels B, C, D, and E)	
ICB and CCB checks performed for all applicable analyses? (Levels D, E)	V A
ICB and CCB results acceptable? (Levels D, E)	
Laboratory blanks analyzed?	S No N/A
Laboratory blank results acceptable?	
Field blanks analyzed? (Levels C, D, E)	Yes No N/A
Field blank results acceptable? (Levels C, D, E)	Yes No N/A
Transcription/calculation errors? (Levels D, E)	Yes No (N/A)
Comments:	
4. ACCURACY (Levels C, D, and E)	
MS/MSD samples analyzed?	Yes No N/A
MS/MSD results acceptable?	Yes No N/A
MS/MSD standards NIST traceable? (Levels D, E)	Yes NO N/A
MS/MSD standards expired? (Levels D, E)	
LCS/BSS samples analyzed?	
LCS/BSS results acceptable?	
Standards traceable? (Levels D, E)	
Standards expired? (Levels D, E)	
Transcription/calculation errors? (Levels D, E)	Yes No N/A
Performance audit sample(s) analyzed?	Yes No N/A
Performance audit sample results acceptable?	Yes No (N/A
Summer 106- Silver (1274) - (1274)	<i>1</i> .
Mg - antima (3/90) Silvan (-12)	214: (14420) - Jal
	/
	no PA

5. PRECISION (Levels C, D, and E)	
Duplicate RPD values acceptable?	Yes No N/A
Duplicate results acceptable?	Yes No NA
MS/MSD standards NIST traceable? (Levels D, E)	Yes No N
MS/MSD standards expired? (Levels D, E)	Yes No
Field duplicate RPD values acceptable?	Yes No N/4
Field split RPD values acceptable?	
Transcription/calculation errors? (Levels D, E)	Yes No W/A
Comments: arsenic (1829) lead (1838)	-7
6. ICP QUALITY CONTROL (Levels D and E)	
ICP serial dilution samples analyzed?	Yes No N/A
ICP serial dilution %D values acceptable?	Yes No N/A
ICP post digestion spike required?	
ICP post digestion spike values acceptable?	Yes No N/A
Standards traceable?	Yes No N/A
Standards expired?	Yes No N/A
Transcription/calculation errors?	Yes No N/A
Comments:	

7.	FURNACE AA QUALITY CONTROL (Levels D and E)		/,	
Dupli	icate injections performed as required?	Yes 1	No	N/A
Dupli	licate injection %RSD values acceptable?	Yes	No	N/A
	ytical spikes performed as required?			
	ytical spike recoveries acceptable?			
	dards traceable?			
Stand	dards expired?	Yes	No	N/A
	A performed as required?			
	A results acceptable?			
Trans	scription/calculation errors?	Yes	No	N/A
	nments:		7	
				·
8.	HOLDING TIMES (all levels)			27/1
	ples properly preserved?	1 1		N/A
Sam	nple holding times acceptable?	Yes	No	N/A
Com	nments:			
				
		•		

9.	RESULT QUANTITATION AND DETECTION LIMITS (all levels))
Results	reported for all requested analyses?	(Yeş	No NA
Results	supported in the raw data? (Levels D, E)	Yes	No(N/A
Sample	s properly prepared? (Levels D, E)	Yes	No N/A
Detection	on limits meet RDL?	Yes	No N/A
Transcr	iption/calculation errors? (Levels D, E)	Yes	No (N/A)
Comme	nts:		
		•	
	·		

Appendix 6

Additional Documentation Requested by Client

Client: Washington Closure Hanford

Job Number: 280-28967-1

Sdg Number: J01506

Method Blank - Batch: 280-120257

Method: 6010B Preparation: 3050B

Lab Sample ID:

MB 280-120257/1-A

Analysis Batch:

280-120581

Instrument ID:

MT_025

Client Matrix: Dilution: Solid 1.0 Prep Batch: Leach Batch:

280-120257 N/A Lab File ID:

25A3051812.asc

Analysis Date: Prep Date: 05/18/2012 2127 05/18/2012 1400 Units:

N/A mg/Kg Initial Weight/Volume: Final Weight/Volume:

1 g 100 mL

Leach Date:

N/A

Result	Qual	MDL	RL
1.6	U	1.6	5.0
0.38	U	0.38	0.60
0.66	U	0.66	1.0
0.076	U	0.076	0.50
0.033	U	0.033	0.20
0.98	U	0.98	2.0
0.041	U	0.041	0.20
	U	14.1	50.0
	U	0.058	0.20
	U	0.10	1.0
	U	0.22	1.0
	U	3.8	5.0
	U	0.27	0.50
			20.0
		0.10	1.0
		0.26	2.0
		0.12	4.0
	•	41.0	300
			1.0
			10.0
		0.16	0.20
			120
			2.0
			1.0
	1.6 0.38 0.66 0.076 0.033 0.98	1.6 U 0.38 U 0.66 U 0.076 U 0.033 U 0.98 U 0.041 U 14.1 U 0.058 U 0.10 U 0.22 U 3.8 U 0.27 U 3.7 U 0.10 U 0.26 U 0.12 U 41.0 U 0.86 U 5.7 U 0.16 U 59.0 U 0.094	1.6 U 1.6 0.38 U 0.38 0.66 U 0.66 0.076 U 0.076 0.033 U 0.033 0.98 U 0.98 0.041 U 0.041 14.1 U 14.1 0.058 U 0.058 0.10 U 0.10 0.22 U 0.22 3.8 U 3.8 0.27 U 0.27 3.7 U 0.27 3.7 U 0.27 3.7 U 0.27 3.7 U 0.10 0.26 U 0.26 0.12 U 0.12 41.0 U 41.0 0.86 5.7 U 0.86 5.7 U 0.86 5.7 U 0.94

Job Number: 280-28967-1

Sdg Number: J01506

Lab Control Sample - Batch: 280-120257

Client: Washington Closure Hanford

Method: 6010B Preparation: 3050B

Lab Sample iD: Client Matrix:

LCS 280-120257/2-A

Solid

1.0 05/18/2012 2129

Analysis Date: Prep Date:

05/18/2012 1400

Leach Date:

Dilution:

N/A

Instrument ID:

MT_025

Lab File ID:

25A3051812.asc

Initial Weight/Volume:

1 g

Final Weight/Volume:

100 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Aluminum	200	192.4	96	82 - 116	
Antimony	50.0	48.43	97	82 - 110	
Arsenic	100	96.77	97	85 - 110	
Barlum	200	204.3	102	87 - 112	
Beryllium	5.00	4.88	98	84 - 114	
Boron	100	95.88	96	81 - 110	
Cadmium	10.0	10.18	102	87 - 110	
Calcium	5000	4819	96	82 - 114	
Chromium	20.0	20.63	103	84 - 114	•
Cobalt	50.0	50.04	100	87 - 110	
	25.0	27.07	108	88 - 110	
Copper	100	104.7	105	87 - 120	
Iron Lead	50.0	51.41	103	86 - 110	
	5000	5051	101	90 - 110	
Magnesium	50.0	51.67	103	88 - 110	
Manganese	100	103.9	104	86 - 110	
Molybdenum	50.0	50.29	101	87 - 110	
Nickel	5000	4968	99	89 - 110	
Potassium	200	199.8	100	83 - 110	
Selenium	1000	170.6	17	10 - 70	
Silicon	5.00	5.20	104	87 - 114	
Silver	5000	5261	· 105	90 - 112	
Sodium	50.0	52.50	105	88 - 110	
Vanadium Zinc	50.0	49.51	99	76 - 114	

280-120581

280-120257

N/A

mg/Kg

Analysis Batch:

Prep Batch:

Units:

Leach Batch:

Job Number: 280-28967-1

Sdg Number: J01506

Matrix Spike - Batch: 280-120257

Client: Washington Closure Hanford

Method: 6010B Preparation: 3050B

Lab Sample ID:

280-28967-1

Analysis Batch:

280-120581 280-120257 Instrument ID: Lab File ID: MT_025

Client Matrix: Dilution: Solid 1.0 Prep Batch: Leach Batch:

280-120257 N/A Initial Weight/Volume:

25A3051812.asc

Analysis Date: Prep Date: 05/18/2012 2138 05/18/2012 1400 Units:

mg/Kg

Initial Weight/Volume: Final Weight/Volume:

1.12 g 100 mL

Leach Date:

N/A

Analyte	Sample Result/Qual		Spike Amount	Result	% Rec.	Limit	Qual
Aluminum	11100		181	14420	1813	50 - 200	4
	0.38	U	45.2	13.79	31	20 - 200	
Antimony	6.4		90.3	82.93	85	76 - 111	
Arsenic	127		181	287.4	89	52 - 159	
Barium	0.43		4.52	4.32	86	72 - 105	
Beryllium	3.1		90.3	76.85	82	75 - 107	
Boron	0.32		9.03	8.56	91	40 - 130	
Cadmium	4320		4520	9399	113	43 - 165	
Calcium	12.8		18.1	31.06	101	70 - 200	,
Chromium	8.4		45.2	46.98	85	72 - 106	
Cobalt	19.7		22.6	39.60	88	37 - 187	
Copper	26900		90.3	26160	-836	70 - 200	4
Iron	20.7		45.2	63.29	94	70 - 200	
Lead	5040		4520	9485	98	64 - 145	
Magnesium	535		45.2	542.2	17	40 - 200	4
Manganese	0.26	U	90.3	78.71	87	75 - 103	
Molybdenum	12.8	U	45.2	53.18	89	61 - 126	
Nickel	· ·		4520	6758	97	56 - 172	
Potassium	2390	U	181	155.4	86	76 - 104	
Selenium	0.85	O	903	529.1	-1	20 - 200	N
Silicon	538	1.1	4.52	4.27	94	75 - 141	
Silver	0.16	U		4832	101	78 - 111	
Sodium	280		4520	101.8	98	50 - 169	
Vanadium	57.5		45.2		144	70 - 200	
Zinc	102		45.2	167.6	177	,0 230	

Job Number: 280-28967-1

Sdg Number: J01506

Duplicate - Batch: 280-120257

Client: Washington Closure Hanford

Method: 6010B Preparation: 3050B

Lab Sample ID:

280-28967-1

Analysis Batch:

280-120581

Instrument ID:

MT_025

100 mL

Client Matrix:

Solid

Prep Batch:

280-120257

Lab File ID:

25A3051812.asc

Dilution:

1.0

Leach Batch:

Units:

N/A mg/Kg Initial Weight/Volume: Final Weight/Volume:

1.06 g

Analysis Date:

05/18/2012 2136 05/18/2012 1400

Prep Date: Leach Date:

N/A

Analyte	Sample Result/Qual		Result	RPD	Limit 40	Qual
Aluminum			11540	3		And the second second second second
Antimony	0.38	U	0.36	NC	40	Ų
Arsenic	6.4		140.1	182	- 30	M
Barium	127		119.7	6	30	
Beryllium	0.43		0.439	2	30	
Boron	3.1		2.69	12	30	
Cadmium	0.32		0.324	0.06	30	
Calcium	4320		4455	3	30	
Chromium	12.8		13.75	7	40	
Cobalt	8.4		8.17	3	30	
Copper	19.7		18.27	7	30	
Iron	26900		25290	6	40	
Lead	20.7		460.5	183	40	M
Magnesium	5040		5021	0.4	30	
Manganese	535		449.2	17	40	
Molybdenum	0.26	U	0.25	NC	30	U
Nickel	12.8		12.52	2	30	
Potassium	2390		2482	4	40	
Selenium	0.85	U	0.82	NC	30	U
Silicon	538	-	661.1	21	40	
Silver	0.16	U	0.15	NC	30	U
Sodium	280	_	282.5	0.9	30	
	57.5		55.84	3	30	
Vanadium Zinc	102		108.8	6	40	

Job Number: 280-28967-1

Sdg Number: J01506

Method: 7471A Method Blank - Batch: 280-120779 Preparation: 7471A

Leach Batch:

Units:

Lab Sample ID:

MB 280-120779/1-A

Solid

Client Matrix: Dilution:

Analysis Date: Prep Date:

05/22/2012 1604 05/22/2012 1210

Leach Date:

N/A

1.0

Client: Washington Closure Hanford

Analysis Batch: Prep Batch:

280-121070 280-120779

N/A mg/Kg Instrument ID:

Lab File ID:

MT_033 120522aa.txt

Initial Weight/Volume: Final Weight/Volume:

0.6 g 50 mL

RL MDL Result Qual Analyte 0.017 0.0055 Ū 0.0055 Mercury

280-121070

280-120779

Result

0.422

Lab Control Sample - Batch: 280-120779

Method: 7471A Preparation: 7471A

Lab Sample ID: Client Matrix:

LCS 280-120779/2-A

Solid

1.0

05/22/2012 1610 05/22/2012 1210

Analysis Date: Prep Date: Leach Date:

Dilution:

Analyte

Mercury

N/A

Analysis Batch: Prep Batch:

> Leach Batch: N/A Units:

mg/Kg

Instrument ID: Lab File ID:

101

Initial Weight/Volume: Final Weight/Volume:

MT_033 120522aa.txt 0.6 g 50 mL

87 - 111

Limit % Rec.

Qual

Qual

Matrix Spike - Batch: 280-120779

Method: 7471A Preparation: 7471A

Lab Sample ID: Client Matrix:

280-28967-1

Solid

1.0

05/22/2012 1617 05/22/2012 1210

Analysis Date: Prep Date:

Dilution:

Analyte

Mercury

N/A

Analysis Batch: Prep Batch: Leach Batch:

Units:

Spike Amount

0.417

280-121070 280-120779

N/A mg/Kg Instrument ID:

Lab File ID: Initial Weight/Volume:

Final Weight/Volume:

120522aa.txt 0.57 g 50 mL

Limit

87 - 111

MT 033

Leach Date:

% Rec. Result Spike Amount Sample Result/Qual 111 0.444 0.558 0.066

Job Number: 280-28967-1

Sdg Number: J01506

Duplicate - Batch: 280-120779

Client: Washington Closure Hanford

Method: 7471A Preparation: 7471A

Lab Sample ID:

280-28967-1

Analysis Batch:

280-121070

Instrument ID:

MT_033

Client Matrix:

Solid

Prep Batch:

280-120779

Lab File ID:

120522aa.txt

Dilution:

1.0

Leach Batch:

N/A

Initial Weight/Volume:

Analysis Date:

05/22/2012 1615 05/22/2012 1210 Units:

mg/Kg

Final Weight/Volume:

0.54 g 50 mL

Limit

20

Prep Date: Leach Date:

N/A

RPD

Analyte Mercury

0.066

Sample Result/Qual

0.0549

Result

18

Qual